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Abstract

It remains an open question how neural responses in motor cortex relate to movement. We 

explored the hypothesis that motor cortex reflects dynamics appropriate for generating temporally 

patterned outgoing commands. To formalize this hypothesis, we trained recurrent neural networks 

to reproduce the muscle activity of reaching monkeys. Models had to infer dynamics that could 

transform simple inputs into temporally and spatially complex patterns of muscle activity. 

Analysis of trained models revealed that the natural dynamical solution was a low-dimensional 

oscillator that generated the necessary multiphasic commands. This solution closely resembled, at 

both the single-neuron and population levels, what was observed in neural recordings from the 

same monkeys. Notably, data and simulations agreed only when models were optimized to find 

simple solutions. An appealing interpretation is that the empirically observed dynamics of motor 

cortex may reflect a simple solution to the problem of generating temporally patterned descending 

commands.

Considerable controversy has centered on whether neural responses in motor cortex encode 

high-level parameters, such as reach direction, or low-level parameters, such as force or 

muscle activity1–11. An equally fundamental question remains largely unaddressed: how are 

those temporally complex responses generated. To execute a movement, such as a reach, 

there must presumably exist some pattern generator that receives the relevant parameters and 
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produces the necessary output. Pattern generation might occur entirely upstream of motor 

cortex, with motor cortex representing and conveying the generated commands. In this case, 

motor cortex responses would be expected to resemble muscle responses. A second 

possibility is that pattern generation may occur downstream, such that motor cortex 

parameterizes a high-level command. This possibility is suggested by the decoding of high-

level features from the population response9,12,13. A final possibility is that motor cortex is a 

key participant in generating outgoing commands14–16. This possibility, as with the first 

possibility, predicts a close relationship between neural and muscle activity4,16–20. However, 

it also predicts there will be additional response features that are signatures of pattern 

generation. Thus, many aspects of the neural response may be quite ‘non-muscle like’ even 

if muscle commands are the final output21.

We recently reported22,23 that the motor cortex population state exhibits quasi-oscillatory 

features that provide a potential basis set for outgoing muscle-like commands. A simple 

linear model of the underlying dynamics captured much of the response structure. These 

results are consistent with the third possibility described above. Yet the theoretical 

foundation for these observations remains unclear. Why do quasi-oscillatory dynamics 

dominate when many other solutions are presumably possible? We explored the hypothesis 

that the observed dynamics are a consequence of generating descending motor commands in 

as simple a fashion as possible. We optimized a family of recurrent neural networks 

(RNNs24) to generate the electromyographic (EMG) signals recorded from multiple muscles 

during the experiments described in ref. 23. We parameterized the family of RNNs by the 

complexity of allowable dynamics, from very simple to extremely complex.

Notably, RNNs were not trained to reproduce the empirical neural responses, only to 

reproduce our proxy for the descending motor commands, the recorded EMG. Beyond 

parameterizing the complexity of the RNN dynamics, we deliberately avoided imposing 

additional constraints. We did not constrain connectivity or attempt to impose structure 

based on known features of cortical connectivity. This allowed the RNNs to seek an 

optimum over a very broad range of dynamics, unconstrained by prior knowledge. 

Nevertheless, we found that the dynamics learned by the models resembled the dynamics 

seen in motor cortex. This was true both qualitatively and quantitatively and at both the 

single-neuron and population levels. However, the similarity between data and model was 

strong only if the RNN was heavily ‘regularized’ to encourage extremely simple solutions. 

This finding suggests that cortex displays the empirically observed dynamics because those 

dynamics provide a simple solution to the problem of generating temporally structured 

outputs.

RESULTS

Task

Two monkeys (J and N) performed a delayed reach task (Fig. 1a)23. To begin each trial, the 

monkey fixated and touched a central target. A maze configuration and target(s) then 

appeared, but the monkey was required to withhold his reach until a ‘go cue’ appeared. Each 

maze and target configuration enforced a particular reach trajectory. We analyzed 27 such 

configurations, termed conditions. We defined the preparatory period as the interval from 
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maze onset until 150 ms after the go cue, the moment at which neural activity begins to 

change rapidly just before reach onset. During the preparatory period, the monkey had 

complete information regarding the reach to be performed, but had not yet begun to move.

Responses of neural populations were recorded from primary motor cortex (M1) and the 

adjacent region of dorsal premotor cortex (PMd). Neurons typically displayed different 

levels of preparatory activity depending on the upcoming movement25,26 (Fig. 1b). 

Approximately 150 ms before movement onset, the relatively stable plateau of preparatory 

activity transitioned to a complex pattern of movement-related activity. Muscle activity, 

recorded from the principal muscles of the upper arm, changed little during the preparatory 

period, but exhibited temporally complex patterns just before and during the movement.

We previously proposed that a purpose of preparatory neural activity is to initialize a 

dynamical system whose subsequent evolution during movement generates descending 

muscle-like commands10,23 (Fig. 1b). If so, what is the nature of those dynamics? We 

examined solutions naturally found by recurrent neural networks. The resulting trained 

networks yielded a set of simple, but empirically constrained, hypotheses whose predictions 

could be compared against the experimentally observed patterns of neural activity. We stress 

that these are models of emergent dynamics, not of cortical architecture or implementation.

A simplified modeling framework for reach generation

Under natural circumstances, a stream of inputs guides reaching. These inputs include those 

that motivate and initiate the reach (for example, the sight of a desirable object and the 

decision to obtain it) and subsequent sensory feedback. We adopted a simplified set of just 

two inputs (Fig. 1c). We assumed that, during the preparatory period, cortex receives inputs 

specific to the reach being prepared. To avoid making assumptions about the reference frame 

of those inputs, we derived the static levels of the reach-specific inputs from the empirically 

recorded preparatory neural activity (Online Methods). We assumed that movement unfolds 

when a condition-independent ‘hold’ signal is released. The goal of the network was to 

utilize these temporally simple inputs (Fig. 1c) to produce, at the right moment, the 

temporally complex patterns of activity recorded across multiple muscles (Fig. 1d).

Ideally, we would have included a third input stage: the sensory feedback that arrives after 

the reach begins. We decided to not include this stage for two practical reasons. First, the 

structure of the feedback is difficult to estimate. Second, many of the features of the neural 

population response are apparent even before movement begins: the establishment of 

preparatory activity and its relationship to early movement-period activity unfold before 

feedback can have had an effect. Empirically, movement-period neural responses lead the 

motion of the hand by ∼150 ms. Sensory feedback takes at least 25 ms to influence cortical 

responses and >50 ms to reflect the current goal27. Thus, during this ∼200-ms interval, the 

neural dynamics are not yet affected by sensory feedback and should presumably be 

explained via internal dynamics. This is true even of optimal feedback control architectures, 

which employ a dynamically varying control policy and internal ‘efference-copy’ recurrence 

to generate time-varying output patterns before the arrival of feedback28,29. Given the 

practical choice to use a model without sensory feedback, we verified with additional 
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simulations that the solutions found by the model were robust to the addition of reasonable 

forms of feedback (Supplementary Fig. 1a,b).

We used RNNs as a modeling tool for three reasons. First, an RNN can approximate any 

dynamical system30. Second, an RNN is an abstract model that is nevertheless inspired by 

biological neural circuits; the units are individually simple and must work together in a 

parallel and distributed fashion. Third, internal recurrent feedback, a defining aspect of 

RNNs, is essential for many forms of pattern generation. We produced two classes of trained 

networks: a regularized model and a complicated model. For the regularized model, we 

included regularization terms during optimization to encourage simple solutions. We 

included no regularization terms in the complicated model (Supplementary Table 1). For 

each monkey, we trained one network from each complexity class. All models successfully 

reproduced the recorded muscle activity for the 27 reaches (Fig. 1d). The normalized error 

was 7% for both models for monkey J and 3% for both models for monkey N.

Comparison of the model to data

Notably, networks were never trained to reproduce neural responses, only to generate the 

empirical EMG. This allowed us, after training, to compare network activity with recorded 

neural activity. To gain intuition, we first used the traditional single-neuron peristimulus time 

histogram (PSTH) format to qualitatively compare responses of single neurons and model 

units. We then used dimensionality reduction techniques to compare key features of the 

recorded and simulated population responses. Finally, we directly and quantitatively 

compared recorded and simulated population responses using canonical correlation analysis 

(CCA) (monkey J; Figs. 2–8; monkey N; Supplementary Figs. 2–8).

Single-unit PSTHs are shown for five neurons (Fig. 2a) and five units from the regularized 

model (Fig. 2b). Color-coding was based on the average preparatory period firing rate. We 

selected these PSTHs to illustrate a range of common patterns found in the neural and model 

populations. Such patterns included plateaus of preparatory activity and a variety of multi-

phasic and monophasic movement-period responses. Representative PSTHs from the 

complicated model are shown in Figure 2c. The PSTHs of the complicated model are much 

more complex than, and bear little resemblance to, most neural responses. Thus, although 

both simple and complicated models generate a basis set of responses adequate to produce 

EMG, only the regularized model employs a basis set that qualitatively resembles the 

recorded neural responses.

Is the similarity at the single-neuron level also present at the population level? We first 

leveraged the recent observation23 that projections of the neural data reveal population 

responses that follow roughly oscillatory dynamics (quasi-oscillatory dynamics). Because 

quasi-oscillatory dynamics have been robustly observed across many data sets, any 

hypothesis that does not predict such dynamics can be rejected. To compare data with 

model, we therefore applied a dimensionality reduction technique (jPCA23, Online Methods) 

that isolates any, if present, quasi-oscillatory structure in the data.

Projections of the neural population responses revealed rotations of the neural state across 

multiple dimensions (Fig. 3a), consistent with quasi-oscillatory dynamics, as previously 

Sussillo et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2016 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reported. Projections of the regularized model population response revealed similar rotations 

(Fig. 3b). These projections were obtained by fitting the population response with a purely 

oscillatory linear dynamical system. The goodness of fit (R2) of those fits was similar for the 

neural and regularized model data: 0.60 and 0.61. Thus, ∼60% of the temporal evolution of 

the population response could be explained by oscillatory dynamics. The frequencies found 

by jPCA were 2.1, 1.3 and 0.9 Hz (neural data), and 2.4, 1.6 and 0.9 Hz (regularized model). 

The total variance captured by the three jPC planes was 45% (neural) and 50% (model). 

Thus, roughly half of the structure of the data was captured by six dimensions (three planes), 

with oscillatory frequencies that were similar for neural and model data. We have previously 

shown that standard models of motor cortex (for example, models assuming tuning for 

kinematics or muscle activity) do not display a strong rotational component23. It is therefore 

non-trivial that the network naturally produces strongly rotational dynamics with a set of 

frequencies similar to those observed in the data.

Rotational structure was also present for the complicated models, but was less strong overall 

(Supplementary Fig. 9). The R2 of the best purely oscillatory linear system was 0.35, 

compared with 0.60 for the data and 0.61 for the regularized model. The rotational planes 

captured a reasonable proportion of data variance for the complicated model (41%), but the 

observed frequencies were roughly half what was found for the data: 1.3, 0.8 and 0.6 Hz. 

Thus, relative to the regularized model and the neural data, the dynamics of the complicated 

model were less well approximated by an oscillatory linear system. Notably, those 

oscillations that were present were considerably slower.

To directly compare neural and model populations and quantify their similarity, we applied 

canonical correlation analysis (CCA). Briefly, CCA attempts to find weightings for the 

individual units in both data sets such that the reweighted data sets are maximally correlated. 

In other words, CCA attempts to find the patterns common across two data sets. The 

reweighted data sets are called the canonical variables. The two sets of canonical variables 

are ordered by their degree of correlation, providing a series of correlation coefficients: the 

canonical correlations. If all canonical correlations are unity, then the two data sets are 

differently weighted versions of the same set of underlying patterns. If all canonical 

correlations are zero, then the two data sets have no underlying patterns in common. In 

practice, two data sets that share any broad similarity will typically have at least one or two 

canonical correlations that are high. The key question is across how many canonical 

variables do correlations remain high.

Figure 4a,b shows the canonical variables for the neural and regularized model. Each row 

captures a basic response pattern shared between neural and model populations. Each pattern 

is a response component, a firing rate versus time across conditions, present in the 

population. The canonical correlations give the correlation between the corresponding 

patterns. To illustrate the range of correlations, we plotted both the best and the most weakly 

correlated canonical variables. Neural and model patterns matched strongly among the top 

canonical variables, and matched modestly well even for the later canonical variables. Thus, 

the neural and regularized model data sets share many population-level patterns that unfold 

in a similar way across both time and condition. As expected, given the analysis in Figure 3, 

some of these patterns were oscillatory in nature, although some were not. Shown in Figure 
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4c,d are the canonical variables for the neural data and the complicated model. Correlations 

fall more quickly for the complicated model than for the regularized model. Thus, there are 

fewer matching patterns between the complicated model and the data than between the 

regularized model and the data.

We used the canonical coefficients to quantitatively compare the neural data with a variety of 

models: the regularized RNN (Fig. 5a), the complicated RNN, a traditional velocity model 

tuned for kinematic variables, such as velocity and position, and a more elaborate complex 

kinematic model. Given that some correlation is expected between almost any two data sets, 

we also analyzed an untrained complicated model (a random network that receives the 

correct inputs, but was not trained) as a baseline. For all models, there was at least one 

canonical variable with a very high correlation; all models shared basic temporal features 

with the data (for example, preparatory activity followed by movement activity). However, 

the canonical correlations remained higher for the regularized model than for any other 

model. To summarize, we computed the average canonical correlation across the first ten 

canonical variables (Fig. 5b). The average correlation was highest for the regularized model 

(0.74) and lower for the other models: 0.51, 0.49, 0.58 and 0.59. Thus, there were more 

shared patterns between the data and the regularized model than between the data and any of 

the other models.

How regularized dynamics produce EMG

Why does the regularized RNN most strongly resemble the data? What is the solution found 

by training? Do the essential features of that solution appear in the data? Because the 

parameters of the trained RNN are known, we can directly dissect its mechanism in the 

language of dynamics. The analyses described above suggested the following broad 

framework. First, preparatory inputs cause the network state to differ for each of the 27 

reaches. The offset of the hold signal then ‘turns on’ strong dynamics with large oscillatory 

components. The resulting oscillatory neural trajectories successfully reproduce EMG when 

projected onto the output weights. Is this indeed what occurs? If so, how does the RNN 

achieve it?

To understand how the RNN generates the EMG, we performed an additional step of reverse 

engineering31. This discovery phase employed standard procedures for analyzing nonlinear 

systems (for example, see ref. 32). How is preparatory activity transformed into a pattern of 

movement-period activity that produces the correct EMG output? For the regularized model, 

the underlying mechanism was surprisingly simple. The offset of the hold signal produced a 

single fixed point, and the dynamics around this fixed point governed the evolution of the 

neural state for all reach conditions.

A three-dimensional visualization of the RNN activity that highlights these dynamics is 

shown in Figure 6b, which plots the evolution of the network population in state space 

(Online Methods) for all 27 conditions. There exists a single fixed point that organizes 

oscillatory neural trajectories for all reach conditions. During preparation, the neural state is 

far from this fixed point. Just before the onset of EMG generation, there is a left-to-right 

translation of the neural state, for all conditions, toward the fixed point. The neural state then 

rotates around the fixed point in a consistent direction (some conditions rotate out of the 
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page and some conditions rotate into the page). This rotation is similar for every condition, 

but with a different phase and amplitude. This is the same rotation that can be seen ‘head on’ 

(Fig. 3b). The neural population trajectories exhibited a notably similar structure (Fig. 6a). 

This simple pattern was specific to the neural data and the regularized model. The 

complicated RNNs did not show single fixed points, but did display a very large number of 

approximate fixed points, indicative of a highly nonlinear and complex mechanism for 

producing EMG. Thus, the solution found by the regularized model is not inevitable. There 

are many other dynamical solutions; they simply don’t resemble the neural data as closely.

To directly characterize dynamics (Fig. 7), we analyzed the linear dynamics around the 

single fixed point in the regularized RNN31 (Fig. 7b). Linearization revealed multiple modes 

in the eigenvalue spectrum. The vast majority of linear modes decayed rapidly; a small 

handful of persistent modes dominated the local dynamics. At least three of these modes 

were strongly oscillatory in nature (that is, the eigenvalues have a sizeable imaginary 

component) and all had a time constant between ∼100 and ∼400 ms. This range of time 

constants was consistent with the neural data and with the time span over which EMG 

showed strong high-frequency features. The range of oscillatory frequencies (∼0.5–2.5 Hz) 

of the persistent modes agreed with the frequencies seen in Figure 3b, where oscillations 

were between 0.9 and 2.4 Hz. In summary, dynamics around the fixed point are notably 

simple: they are dominated by a small number of oscillatory modes that decay on timescales 

consistent with the neural data.

Dynamics can be inferred either by analysis of connectivity (as above) or by fitting the data 

directly with a dynamical system (a step in jPCA). Both methods involve approximations, 

but one would nevertheless hope that they would roughly agree. If they do not, then the goal 

of inferring dynamics from data would be unobtainable without a full connectome. We 

therefore compared, for the model, the eigenvalues found by analyzing connectivity (Fig. 

7b) with the eigenvalues found by applying jPCA. The eigenvalues reported by jPCA (which 

were constrained to be purely imaginary) revealed three frequencies that closely agreed with 

the top three frequencies found by analyzing connectivity. The key planes in the RNN state 

space (determined by the associated eigenvectors) were also very similar for the jPCA and 

connection-based approaches (Fig. 7c). The two planes closely overlapped. Thus, the first 

jPCA plane corresponded closely with the plane containing the fastest oscillation found by 

analyzing the connectivity (the plane corresponding with the third eigenvalue). Thus, both 

approaches agree that oscillations in the ∼0.5–2.5-Hz range form a large component of the 

dynamics.

For the recorded neural data, it is impossible to perform analyses that require knowing all 

connections. However, one can still estimate dynamics by fitting the responses themselves. 

Doing so via jPCA revealed a set of eigenvalues (Fig. 7a) that closely match those of the 

model: one slightly faster than 2 Hz, one at about 1.5 Hz and one slightly below 1 Hz. We 

also computed the top eigenvalues for an unconstrained linear fit to the neural data. The 

frequency content of the unconstrained linear model also closely matched that of the 

regularized model. This confirms the results of the jPCA analysis in Figure 3: both the data 

and the model showed prominent oscillatory structure with a similar set of frequencies.
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Dynamical models that match the data are simple

The above analyses indicate that the regularized RNN finds a solution that resembles, in 

many ways, that seen in the recorded population of motor cortex neurons. This is potentially 

quite surprising: the RNN was not fit to neural data and was not constrained to obey any 

particular connectivity. Furthermore, it seems unlikely that RNN optimization imitates either 

biological learning or evolution. Why did the regularized model find the solution of a single 

fixed point that produces oscillatory dynamics? Is there an advantage to this solution that 

might explain the similarity between model and data? To address this question, we 

constructed models that initially had extremely complicated dynamics, but, as a result of 

strong regularization during training, end up finding dynamically simple solutions (as a 

technical side-note, this exercise employed slightly simplified model parameters to ensure 

robustness across multiple optimizations; Online Methods).

As optimization proceeded, we saved ‘snapshots’ of networks during optimization and 

compared their responses with neural responses using CCA (as in Fig. 5). The average 

canonical correlation, and thus the similarity to data, rose steadily with optimization (Fig. 

8a). As expected, EMG fit error falls during training (Fig. 8b). However, this effect was 

rapid, and fit error actually increased very slightly over the second half of the training. 

During this period, the regularization term is driving the model to find simpler and simpler 

solutions. As it does so, the similarity between model and data increases steadily. This did 

not occur when regularization was turned off: the fully trained complicated model fits EMG 

very well, but resembles the data only slightly more than a completely untrained network. 

Thus, model responses become more similar to the neural data during optimization as a 

result of the constraint that the network must use simple dynamics to reproduce EMG.

Do simpler solutions convey benefits? We analyzed the robustness of the fully trained 

regularized model (Fig. 8a) and the fully trained complicated model. To simulate the effects 

of trial-by-trial noise, we analyzed how the models responded to random perturbations in the 

preparatory period inputs (Online Methods). The regularized network yielded a much 

smaller error in the EMG output (Fig. 8c). To simulate the effects of synaptic changes, such 

as dying neurons or unreliable synapses, we examined robustness to structural perturbations 

of the connectivity matrix (J in equation (1)). Again, the regularized network was much 

more robust than the complicated model (Fig. 8d).

Further model comparisons and extensions

Does the regularized model (having been built to generate EMG) perhaps resemble the 

neural data simply because the neural data resemble the EMG? Or are there response 

features in the model and neural populations that match, above and beyond, what is seen in 

the EMG? In short, there are, in multiple ways. First, both the regularized model population 

and the neural population showed rotational dynamics (Fig. 3), something not present in the 

muscle population23. Second, both the model and neural populations showed preparatory 

activity, which is essentially absent in the EMG. Third, both the model and the data were 

higher dimensional than the EMG itself (Supplementary Fig. 11c,d). For the model (and, by 

extension, possibly for the data), this higher dimensionality is a straightforward consequence 

of the fact that the internal dynamics that generate EMG must be higher dimensional than 
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the final output. Finally, quantitative comparison via canonical correlation analysis revealed 

that the data resemble the regularized model more strongly than they do the EMG itself. 

Indeed, of all the possible comparisons—EMG activity, the regularized model, the 

complicated model, the various kinematic models—the one that most resembled the data is 

the regularized model (Supplementary Fig. 11a,b). Finally, models that incorporate muscle 

synergies or spinal cord modules also resembled the neural data closely (Supplementary Fig. 

1c,d).

DISCUSSION

Our central result is that an RNN trained to produce EMG exhibited dynamics that strongly 

resemble the empirically estimated dynamics of motor cortex, but only if model 

optimization promoted a highly regularized (that is, simple) solution. The resemblance 

between the regularized model and data was manifested at the level of single neuron PSTHs, 

at the level of oscillatory population trajectories and in direct quantitative comparison via 

CCA. Notably, this agreement was not achieved by fitting the RNN to the neural data. The 

simple preparatory period inputs to the RNN were derived from the neural data, but the 

RNN had no inputs that indicated the ‘correct’ patterns of movement period activity, nor was 

it trained to reproduce those patterns. Rather, the agreement between model and data 

emerged as a result of two factors: the need to generate the actual patterns of EMG and the 

requirement that the model use simple dynamics.

Analysis of regularized model dynamics revealed a sequence of four events. First, during the 

preparatory period, condition-specific inputs produce a set of states (one per condition) that 

act as initial states for the upcoming movement-period dynamical system. Second, the 

movement-period dynamical system is produced by the simultaneous removal of the hold 

cue and the condition-specific inputs. Third, movement-period dynamics are dominated by a 

single, condition-independent fixed point with approximately linear and strongly oscillatory 

dynamics. Fourth, those dynamics yield neural trajectories whose projections onto the output 

dimensions produce the patterns of EMG. The similarity of this sequence in model and data 

lend support to the view that motor cortex concerns itself with low-level features of 

movement generation1,2,4,11,17,18,33,34.

Our modeling study provides a unified dynamical framework in which to understand a 

number of experimental findings. The model solution accords with the proposal that a key 

purpose of preparatory activity is to establish an attractive neural state that is appropriate, 

when triggered, to produce the desired movement22,35. Although we did not seek to model 

movement variability, the basic mechanics of the model are consistent with the finding that 

preparatory variability has behavioral consequences36. Finally, the network successfully 

generated unchanging EMG during the preparatory period. To achieve this, the model 

employed a muscle-null space to prevent preparatory period dynamics in the network from 

perturbing the output37.

Two key features emerged when the network was optimized with regularization. First, the 

network became much more robust to perturbations of both inputs and connectivity, an 

anticipated and desirable consequence of regularization. Second, the network developed 
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simple oscillatory dynamics that resembled the data. This resemblance increased steadily 

with training as the network found simpler and simpler solutions. These results indicate that 

relatively simple quasi-oscillatory dynamics are a natural and robust way of solving the 

problem of pattern generation.

This finding suggests an intriguing analogy between pattern generation in the motor cortices 

and encoding in the visual cortices. A previous study38 optimized a feedforward neural 

network to encode natural images. Optimization yielded Gabor filters, resembling empirical 

receptive fields, but only when regularization encouraged sparseness. By analogy, there are 

many ways to generate EMG, and our network produces cortex-like responses only when 

regularized to encourage simple solutions.

It has long been debated whether spatial tuning in motor cortex (that is, cosine tuning for 

direction) reflects an abstract code for direction or a mechanistic role in the production of 

muscle forces. Recent models that embody the latter view4,16,19,39,40 successfully predict 

properties of directional tuning, including the presence of broad tuning, the distribution of 

‘preferred directions’, and shifts in tuning and response gain with starting position (see ref. 

2). The model presented here is very much in this vein—the network was trained to produce 

patterns of EMG, but we concentrated much more on temporal response properties. For fast 

reaches, the empirical neural responses were very temporally complex and defied concise 

description in terms of a preferred direction. These same properties were seen in our model 

and reflect the mechanism used to produce EMG. That mechanism involved a set of 

rotations spanning a handful of planes in state space. The response of each individual neuron 

was an essentially random projection of this rotational subspace, resulting in the observed 

complexity and heterogeneity.

Our focus on temporal pattern generation is shared with a number of other models. In 

particular11,41, it was proposed that response complexity might naturally be explained by a 

recurrent network. A recent study15 employed a model with oscillatory (and rectilinear) 

components as a means for controlling a simple arm model. A major difference between the 

two approaches is that we began with EMG data and employed a systems identification 

strategy to discover the mechanism of a dynamical system that could generate the empirical 

EMG. The solution is in broad conceptual agreement with the previous study15.

More generally, there has been considerable recent focus on the broad topic of pattern 

generating networks24,42–44. For example, inhibition-stabilized networks can generate 

temporally patterned outputs45 via a basis set that includes quasi-oscillatory patterns, in 

qualitative agreement with ref. 23. However, the resulting ‘non-normal’ dynamics were not 

trained to produce any particular pattern—they simply contain a rich basis set of useful 

patterns. The generic nature of those patterns makes it unlikely that the model population 

quantitatively resembles the neural data from motor cortex. Yet it is quite possible that future 

modifications of that model, including optimization and regularization, might allow it to 

successfully fit EMG and match the neural data. More broadly, pattern-generating network 

models derive dynamics from recurrence, which can result from either internal connections 

(for example, the present model41,45) or external sensory feedback (for example, see ref. 16). 

Although these represent different model classes, one can anticipate unifying extensions. For 
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example, a previously described model16 employs only external feedback, but its replication 

of empirical preferred-direction distributions would likely hold were it extended to include 

efference copy or other internal feedback. Similarly, our model continued to find the same 

basic dynamical solution if provided with sensory feedback that was a filtered version of its 

output (Supplementary Fig. 1a,b,e,f). In this context, it should be stressed that, although our 

model reveals robust dynamical solution to the problem of producing multiphasic EMG, the 

scope of the recurrent circuitry, cortical, central and/or feedback, supporting those dynamics 

remains an open question. What is clear is that dynamics similar to those exhibited by the 

model can be seen in motor cortex. This is consistent with the interpretation that, however 

broad the relevant recurrent circuitry might be, motor cortex is sufficiently central that many 

key aspects of the dynamics can be observed there.

The dynamical systems view of movement generation carries some general implications. 

First, model units contain a variety of responses that sometimes resemble the time course of 

position, velocity, speed and other variables. Yet none of these parameters is truly 

represented by the model. Furthermore, although the model certainly contains an implicit 

representation of the upcoming EMG, individual-neuron responses rarely match the patterns 

of EMG. The reason is not only that EMG-like signals are ‘mixed’ across neurons, but also 

that the network contains response components that are required for pattern generation, but 

do not resemble the final output. Just as a simple two-dimensional oscillator needs both a 

sine and a cosine as a dynamical necessity, pattern generation will typically require extra 

internal patterns necessary to support the dynamics. In the case of the model, and by 

extension possibly in the case of the data, it would be a mistake to explain each neuron’s 

response as a representation of meaningful variables. Rather, the model should be 

understood through the set of population-level latent variables, their response to inputs, their 

internal dynamics and their influence on the output projection. This will be true not only of 

pattern generating networks, but of many networks with strong dynamics that subserve 

internal computations (for example, see ref. 32). In summary, it should be no surprise that 

individual-neuron responses are often quite mysterious10,11,23,32,46. Understanding neuronal 

responses in recurrent networks necessitates going beyond population analyses that read out 

variables and instead adopting population analyses that capture the internal dynamics 

underlying the central computations.

METHODS

Methods and any associated references are available in the online version of the paper.

ONLINE METHODS

Recordings of physiological data

Recordings were made from the cortex of two monkeys performing a delayed reach task 

(Fig. 1a). Animal protocols were approved by the Stanford University Institutional Animal 

Care and Use Committee. Our basic methods have been described previously22,23,47,48. 

Briefly, monkeys performed both straight reaches and reaches that curved around one or 

more intervening barriers. This task was beneficial because of the large variety of different 

reaches, and thus EMG patterns, that were evoked. There were 27 different reach types 
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(conditions), each of which was repeated many times (∼20–50 trials). Each trial began when 

a central spot was visually fixated, touched and held briefly. The onset of a target (and any 

accompanying barriers) marked the beginning of the preparatory period. If the hand or eye 

moved during this period the trial was aborted. The preparatory period ranged from 0–1,000 

ms. Only trials with preparatory periods >400 ms were analyzed. Physiological recordings 

(neural and EMG) were averaged across trials and filtered23 to create a smooth rate as a 

function of time. Averages were made locked to target onset, the go cue and movement 

onset. To create a single trace as a function of time, these three traces were truncated and 

aligned, and the resulting gaps between them were interpolated22.

Recordings were made from M1 (both surface and sulcal) and from the adjacent (caudal) 

aspect of dorsal premotor cortex (PMd) using both standard single-electrode and array 

recording techniques (Blackrock Microsystems). For each monkey we created a single large 

data set that included neurons recorded using both techniques (161 and 307 units for 

monkeys J and N). Sulcal M1, surface M1 and caudal PMd are contiguous. While there are 

important differences in their average response properties (for example, preparatory period 

activity is more common in PMd), these differences are far from absolute: M1-like neurons 

are frequently found in caudal PMd and vice versa. Our principal analyses thus considered 

all neurons without attempting to divide based on either anatomy or response properties. 

Supplementary Figure 10 provides an additional analysis where anatomy is considered.

EMG data were recorded, as described previously35, from the major muscles of the upper 

arm. When feasible we included repeated recordings from different aspects of key muscles, 

and the target of the model was based on the highest quality recordings (7 and 8 for monkeys 

J and N, respectively). For both monkeys we employed recordings from the anterior, medial 

and posterior deltoid, pectoralis major, trapezius and biceps brachii. For monkey J we 

included a second recording from the biceps brachii. For monkey N we included two 

additional recordings from the trapezius, and one additional recording from the anterior 

deltoid. EMG records were rectified, smoothed and averaged before further analysis. 

Sampling error (due to a finite number of trials) resulted in small idiosyncratic differences 

between conditions during the baseline and preparatory periods. To avoid having the model 

attempt to fit these small differences, they were simply removed before fitting.

Representational models

In addition to the RNNs, we simulated two models, the velocity model and complex 

kinematic model, for which neural activity was ‘tuned’ for standard movement parameters 

(Fig. 5 and Supplementary Figs. 5 and 11). These models took the general form

where rn(t) is the firing rate of neuron n at time t, fn is a tuning function, and param1 (t), 
param2 (t)… are represented parameters such as hand velocity or target position. These 

models are described in ref. 23. Briefly, in the velocity-tuned model, movement-period 

activity was tuned for horizontal reach velocity, vertical reach velocity and reach speed. 

Each unit thus had a ‘preferred direction’ in velocity space. Preferred directions were 
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assigned randomly. Preparatory activity was based upon three additional underlying factors: 

horizontal reach endpoint, vertical reach endpoint and peak reach speed. The complex 

kinematic model was similar, but units were tuned to a greater variety of kinematic factors: 

position, velocity, acceleration and jerk.

RNN definition

We implemented the dynamical system, , using a standard continuous-time RNN 

equation of the form

(1)

where the xi variables are the activations of the network units and rk are the corresponding 

firing rates. The network has N units and I inputs. The firing rates are related to the 

activation variables via a saturating nonlinearity (see Supplementary Table 1 and other 

details below). The variables in the network interact through the synaptic weight matrix, J. 

The inputs to the system are given by uk and come into the system through input weights, B. 

The units each have an offset bias, . A single time constant, τ, sets the time-scale of the 

network.

In order to compose EMG from network activity, we define a linear readout

The readout, zi, is a weighted sum of the firing rates with weights, Wi:, plus a bias term, . 

There are M readouts, one per recorded muscle.

For all models, the value of τ was 50 ms, and N was 300 (see Supplementary Table 1 for 

parameters that varied by model). The condition-specific inputs were six-dimensional (see 

below). In addition we added a condition-independent hold cue input. Thus, I was 7. The 

elements of J were initialized with zero mean, Gaussian entries with variance g2 /N. The 

elements of B were initialized with zero mean, Gaussian entries with variance h2/I. The 

output weights and all biases were initialized to 0. The network was simulated using Euler 

integration with time steps of τ / 10 = 5 ms. There were two sets of models per monkey, one 

for Figures 1–7, and a second for the analysis of training in Figure 8.

Training the network

Networks were optimized to generate multidimensional EMG. The error function was the 

squared error between the network output and the EMG
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where EMG(c, t) is the M-dimensional EMG across all C = 27 reach conditions and across 

all time, T, including the baseline, preparatory and movement periods. The set of parameters 

modified to minimize E was {B, J, W, bx, bz}. We report normalized error, which is E 
normalized by the EMG variance averaged over all conditions and muscles.

For the regularized models we modified the cost function to encourage the network to 

generate EMG as simply as possible. To this end, we included three separate regularization 

terms in the overall objective function: a standard L2 regularization on the weights, RL2; a 

regularization on the firing rates, RFR; and a novel regularization that encouraged simple 

dynamics, RJ. The error function minimized during training was

with the α, β and γ hyperparameters setting the relative strengths of the regularization 

(Supplementary Table 1). The four terms that comprise the regularized error, taken together, 

dictate that the optimization procedure should create networks that produce an output very 

close to the empirical EMG (E), and do so as simply as possible in terms of dynamics (RL2, 

RFR and RJ).

The first regularization term is a standard L2 penalty on the input weights and the output 

weights, defined as

We included a second regularization term, defined as

This regularization helped to keep the simulated units from permanently saturating, 

something that rarely happens with biological neurons.

Finally, we included a novel form of regularization inspired by, but conceptually different 

from49, and defined by

where ‖·‖F is the Frobenius norm. Conceptually, RJ penalizes the network for making 

unnecessarily complicated state-space trajectories. It accomplishes this by forcing the first-

order Taylor series expansion of network equation (1) to be a low-dimensional system, with 

all unnecessary modes decaying very quickly on a time scale of τ (that is RJ preserves only 

the decay term in equation (1)). As the linearized dynamical system around the single fixed 
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point explains the functioning of the nonlinear RNN to good approximation31, this is an 

intuitive approach to simplifying state-space dynamics. In implementing the derivative of RJ 

with respect to the network weights, we used a simplified derivative that computed the direct 

dependence of RJ on the parameter J, namely

The second portion of the derivative, which gives the indirect dependence of RJ on previous 

values of r(c,t), was not used for two reasons. First, the majority of terms in the expression 

for the Hessian of the second portion are not guaranteed to be positive definite. Positive 

definiteness in the Hessian is required for the Hessian-Free optimization technique50 used in 

this study. Second, the indirect term goes to zero as RJ goes to zero. Use of L2 weight 

regularization on J achieves similar results.

We optimized all network weights and biases to minimize ER using the Hessian-Free (HF) 

training method for RNNs. HF is an exact second order method that uses back-propagation-

through-time to compute the gradient of the error with respect to the network parameters. 

After training, all networks performed the task well; within 7% normalized error for monkey 

J and 3% normalized error for monkey N for the EMG during the movement period. While it 

was possible to reduce the EMG error quite a bit further, the ultimate goal of the study was 

to compare the model internals to the neural data collected for the monkeys. As such, we 

found that optimizing further did not help make the models more similar to the data, 

presumably due to irrelevance or noisiness of small features of the recorded EMG.

Model hyperparameters

There were a number of hyperparameters that were set manually when training the models, 

(for example, input gain, recurrent gain, amount of regularization, etc.; Supplementary Table 

1). The hyperparameter g sets the scale of the recurrent weight matrix. If one picks g < 1, 

then the network will suffer from the vanishing gradient problem and be very difficult to 

train. If g ≫ 1, then the network will be chaotic and may under some circumstances be 

difficult to train. In our studies, we examined the g > 1 and g ≫ 1 chaotic initialization 

ranges.

To produce a model with rich dynamics (the complicated model) we used g ≫ 1 to produce 

dynamics that were initially rich, and did not regularize further during optimization (α, β, 

and γ= 0). To produce a model with simple dynamics (the ‘regularized model’) we used g > 

1 to produce less rich initial dynamics and then simplified dynamics further via 

regularization during optimization. This successfully led to two classes models that both 

reproduced the EMG but with very different degrees of dynamic complexity. As a technical 

aside, versions of the regularized model could also be produced by initialization with g ≫ 1 

and allowing regularization to produce the simplification. However, when using the rectified 

tanh function in combination with heavy regularization, in practice this nearly always led to 

stalled optimizations, presumably due to either local minima or pathological curvature. For 
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this reason we avoided this regime (g ≫ 1 and regularization) for all simulations that use the 

rectified tanh (Figs. 1–7).

For the simulations in Figure 8, the goal was specifically to examine network behavior when 

dynamics are initially very rich (g≫ 1) and are then regularized slowly over the course of 

training. For this set of simulations we did not use the rectified tanh for the technical reason 

discussed above, and used the simpler tanh function instead. It would have been slightly 

preferable to continue to use the rectified tanh as it disallows negative firing rates and thus 

produces more realistic single-neuron responses. However, the use of the tanh allowed for 

robustly repeatable results for the analysis in Figure 8 as the optimization was reliable for 

this simpler function, even under challenging circumstances. In practice the quantitative 

match between the neural and model responses was very nearly as good with the tanh as 

with the rectified tanh.

In summary, for each monkey we used two sets of hyperparameters (regularized and 

complicated model), each tailored to the needs of the simulations being performed. The first 

set was used for nearly all analyses, and the second was used for the analysis in Figure 8 

(Supplementary Table 1).

Inputs to the RNNs

The input to the RNNs contained a condition-independent hold cue, preceded by condition-

specific inputs that indicated reach condition. Condition-specific inputs were derived from 

the preparatory period neural activity as follows: we took the time-and-trial averaged 

preparatory activity, a matrix of size N × C, where N is the number of recorded neurons, and 

performed PCA to reduce it to a matrix of size K × C. This yielded K numbers that allowed 

preparatory activity to encode a particular reach condition. We chose K = 6 to ensure that 

while inputs were not overly complex, they still captured much of the variance in the 

empirical data (81% and 72% for monkeys J and N) and were thus rich enough to 

distinguish between conditions. We created a simple temporal profile that turned this K-

dimensional input on and off (Fig. 1c). The condition-independent hold cue was on at the 

beginning of the each simulation, and it turned off with the same offset dynamics of the 

condition-specific input (Fig. 1c). In summary, the networks received a seven-dimensional 

input, with K = 6 reach-dependent inputs and a single, condition-independent hold cue.

The regularized models of Figures 1–7 (Supplementary Table 1) employed multiple delays 

between the onset of the preparatory input and the onset of the hold cue. We added this 

feature to avoid concerns about implicit time locking of model activity to the beginning of 

the simulation, and to ensure that the model was in fact producing EMG in response to the 

offset of the hold cue. Timing was thus as follows: the condition-specific inputs were 

followed, after a 100–800-ms delay, by the offset of the hold cue. The model EMG output 

began to change ∼100 ms later. All simulation data shown had a delay of 650 ms.

jPCA

jPCA is described at length in ref. 23. Briefly, jPCA considers the neural state across times 

and conditions, x(t, c), and its temporal derivative, , and fits a linear model 
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, where M is constrained to be skew-symmetric in order to test the 

hypothesis that the population state evolves according to oscillatory dynamics. jPCA 

provides summary features relevant to that hypothesis, including the quality of the fit, the 

eigenvalues and the associated frequencies. jPCA also allows visualization of any two-

dimensional projections of the data that contain rotational structure. To ensure that jPCA 

focused on patterns that were robustly present, data were preprocessed using PCA to reduce 

dimensionality from the number of neurons or units in the data set to the 12 dimensions that 

captured the most variance. We analyzed a time period where neural activity was in strong 

flux: 280 ms before movement onset to 220 ms after movement onset. Unlike most analyses 

in ref. 23, the cross-condition mean was not subtracted from the neural responses. Some 

projections thus capture structure that is very similar across conditions. For present 

purposes, by not subtracting the mean we gain the advantage that it becomes straightforward 

to compare structure found via jPCA with structure found by linearizing around fixed points 

(see below). To do so, we compare the eigenvalues of the linearized dynamics with the 

eigenvalues of M (Fig. 7b). To ensure that the eigenvalues of M were not oscillatory simply 

due to the skew-symmetric constraint, we removed that constraint for one analysis (Fig. 7a 

and Supplementary Fig. 7a).

CCA

CCA was used to directly compare model and neural population responses. As a 

preprocessing step, both the monkey and model data were first reduced to ten dimensions 

using PCA. This ensured that CCA did not find dimensions of high correlation but low data 

variance. The period of comparison was broader than that for jPCA: from −400 ms to 400 

ms relative to movement onset. This allowed CCA to compare activity before, during, and 

after the period where neural activity was in strong flux.

Fixed-point finding

To understand the mechanism embodied in the trained models, we used standard nonlinear 

dynamical systems methods of linearization around a fixed point. The application of this 

technique to high-dimensional RNNs was described in detail in ref. 31. The result is a set of 

points in state-space, {x1*, x2*, x3*, …}, where the dynamics described by equation (1) are 

at equilibrium, for example, , for some constant input, uconst. These 

points are particularly insightful as the linearized dynamics around them approximately 

describe the nonlinear dynamics for some volume around the fixed point. Thus, for some 

region around the fixed point we can exchange the nonlinear dynamical system (1) for the 

linear dynamical system, , with δx ≡ x - x*, and M ≡ F′ (x*), the first-order 

Taylor series expansion of F(x, uconst) around x*.

For the regularized models, we performed the fixed-point analysis during the movement 

period. During the movement period, when all inputs were turned off, that is uconst = 0, the 

fixed-point analysis yielded a single fixed point for almost all randomly initialized models 

(the remaining models had a tight cluster of 2–3 fixed points). In Figure 7b,c 

(Supplementary Fig. 7b,c) we examined the eigenvalues and eigenvectors of M, the linear 
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dynamical system around the single fixed point, to determine the nature of the dynamical 

system that generated the EMG signals.

Three-dimensional visualization

We visualized the population response by projecting it into a three-dimensional subspace 

(Fig. 6 and Supplementary Fig. 6). We chose the subspace spanned by the first jPC plane 

(labeled j1 and j2 in the figures) as well as an additional dimension that captured the 

variance of the cross-condition mean, labeled c1. We did so because such a dimension was 

prominent for both the neural and model data. The cross-condition mean was defined as the 

trajectory through time when all 27 conditions were averaged together. To find dimensions 

that reveal this trajectory, we computed the top two PCs of the N × T cross-condition mean 

data matrix. For both the data and the regularized data sets this always revealed a dimension 

that captured a largely monotonic change in the cross-condition mean. For example this was 

PC2 for monkey J and PC1 for monkey N. Since the variance in the top two PCs is roughly 

comparable, the choice of whether to use PC 1 or PC 2 was based on which captured the 

monotonic trajectory. The visualization subspace was defined by orthogonalizing these three 

vectors (j1, j2 and c1). The axes in each plot indicate the original three vectors before 

orthogonalization. The vector describing the cross-condition mean was largely orthogonal to 

the plane described by j1 and j2.

Subspace overlap analysis

The first subspace angle (also known as the first principal angle) was used to compare how 

closely two subspaces overlapped (Fig. 7c and Supplementary Fig. 7c). The first subspace 

angle gives the largest of all the angles necessary to rotate one high-dimensional subspace 

into the other. A subspace angle of zero indicates that the two subspaces span the same 

space. A subspace angle of 90 degrees indicates that there is at least one dimension in one 

subspace that is orthogonal to all dimensions in the other. However, there may still be 

considerable overlap among the other dimensions. Thus, the sub-space angle is conservative 

when considering many dimensions: a subspace angle of 30 degrees in an N = 300D space 

indicates that two subspaces are extremely similar. In Figure 7c, for the regularized model, 

we compared the subspace spanned by each of the jPCA planes to that spanned by each of 

the five oscillatory planes, found by eigenvector analysis applied to the matrix M, of the 

linearized system, .

Input perturbation robustness analysis

We added a random, Gaussian distributed constant to each of the six condition-specific 

inputs that specified which of the 27 reaches the network should generate. The random 

constant was scaled as a normalized percentage of input scale. This process was repeated 50 

times for each perturbation level and the errors were averaged to yield Figure 8c 

(Supplementary Fig. 8c). The period of comparison was between 400 ms before movement 

onset to 400 ms after movement onset.
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Structural robustness analysis

Structural noise was added to the J matrix in the form of additive Gaussian perturbations. 

Specifically, a trained recurrent matrix, J, was transformed by Jij ← Jij + βij, where βij was 

sampled from a zero-mean, Gaussian distribution. The variance of this distribution was 

scaled to the normalized mean absolute weight of the regularized model. This process was 

repeated 50 times for each perturbation level and the errors were averaged to yield Figure 8d 

(Supplementary Fig. 8d). The period of comparison was between 400 ms before movement 

onset to 400 ms after movement onset.

A Supplementary Methods Checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Monkey task and network task definition. (a) Monkeys performed a delayed reach maze 

task. After fixating and touching a central point, the target and maze turned on. Some 

conditions included distractor targets. During the preparatory period, the monkeys had to 

determine which target was reachable and prepare a reach that avoided any intervening 

barriers. A go cue prompted the monkey to execute the reach. We employed 27 conditions, 

each consisting of a particular configuration of target and barriers. The resulting reaches 

included a variety of straight and curved paths. (b) Example PSTH for a single neuron. Each 

trace plots the mean across-trial firing rate for one condition (27 total). Traces are colored 

green to red based on the level of preparatory activity. The first gray line shows the timing of 

target onset, that is the beginning of the preparatory period. The second gray line shows the 

end of the preparatory period. Vertical and horizontal scale bars indicate 20 spikes per s and 

200 ms. (c) Networks were optimized to generate EMG. Network inputs consisted of a 

condition-independent hold cue (purple) and a six-dimensional condition-specific input 

(black), which specified the condition for which the network should generate EMG. This 

example shows the levels of those six inputs for condition 1. From these inputs the RNN 

generated the multi-dimensional EMG: green traces plot the recorded EMG from seven 

muscles for condition 1. To ensure the model fit signal and not noise, we filtered EMG 

signals and removed the (very minimal) noise during the baseline (Online Methods). (d) 

Three example conditions showing the multiple muscle target EMG (green, one trace per 

muscle) and the corresponding trained outputs of the regularized model for monkey J (red). 

Normalized error between the empirical EMG and the model output was 7%. Horizontal 

scale bars indicate 200 ms.
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Figure 2. 
Example PSTHs from monkey J and the regularized and complicated models for monkey J. 

(a) Example PSTHs from five neurons for monkey J (data are presented as in Fig. 1b). 

Examples were chosen to illustrate the range of responses, including neurons with strong 

preparatory activity (first two rows), neurons with a broad rise in activation during the 

movement period (middle row) and neurons with oscillatory activity during the movement 

period (bottom two rows). Vertical and horizontal scale bars indicate 20 spikes per s and 200 

ms. (b) Example PSTHs chosen from the regularized model for monkey J. Examples were 

Sussillo et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2016 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chosen to both highlight the similarities between neural and model responses and to be 

representative of the patterns exhibited by the model units. (c) Example PSTHs from five 

units from the complicated model for monkey J. The PSTHs of the complicated models 

rarely bore a strong resemblance to those of the neural data.
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Figure 3. 
jPCA projections of the population responses. (a) jPCA projections for the neural data 

recorded from monkey J. Each trace shows the evolution of the neural state over 500 ms. 

Traces start −180 ms before movement onset, at the moment when the relatively stable 

preparatory state (circles) transitioned to the movement period trajectory. For visualization 

purposes, traces are colored on the basis of the preparatory-state projection onto jPC1 (a.u., 

arbitrary units). The three projections correspond to the largest magnitude complex 

eigenvalue pairs of the matrix Mskew, found when fitting the data with  (Online 

Methods). These eigenvalues correspond to frequencies of 2.1, 1.3 and 0.9 Hz (left to right) 

with a quality of fit (R2) for the optimal purely oscillatory linear system of 0.60. (b) jPCA 

projections for the regularized model of monkey J. Data are presented as in a. Frequencies 

are 2.4, 1.6 and 0.9 Hz. The linear system, , had a quality of fit (R2) of 0.61.
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Figure 4. 
Canonical correlations analysis for monkey J. (a,b) CCA projections (canonical variables) of 

the neural population response (a) and the regularized model for monkey J (b). These 

projections involve the directions in state-space that maximally correlate the neural data with 

the model data, resulting in a series of maximally to minimally correlated variables. Each 

row shows one of the canonical variables (CVs) 1, 2, 5, 9 and 10, highlighting the most and 

least similar projections. The correlation r is also shown. Traces are colored on the basis of 

the value of the projection at the beginning of the trace. The vertical scale bars indicate 1 
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arbitrary unit and the horizontal scale bars represent 200 ms. (c,d) Canonical variables of the 

neural population response (c) and the complicated model for monkey J (d) (data are 

presented as in a and b).
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Figure 5. 
Comparison of simulated and neural population responses. (a) Summary of canonical 

correlations. CCA analysis provides a spectrum of correlation coefficients that can be used 

to directly compare one multidimensional data set to another. The canonical coefficients are 

shown for the various models, each compared with the neural data (blue indicates 

regularized dynamical model, also shown in Figure 4; red indicates complicated dynamical 

model, black indicates untrained complicated dynamical model with inputs, green indicates 

velocity model, dark green indicates complicated kinematic model). (b) The average of the 

canonical correlations (average of lines in a) between the models and the data. The average 

canonical correlation provides a single number for each model that quantifies how closely 

the model population response matches the recorded population response.
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Figure 6. 
Monkey J and regularized model state-space visualizations. (a) Three-dimensional 

visualization of the neural data during the movement period for monkey J. The projection is 

comprised of the first jPC plane (Fig. 3a, left panel) and an additional dimension that 

captures variance from the cross-condition mean. Each trace is color-coded to show one of 

the 27 reach conditions. For all conditions, the trajectory during the preparatory period is 

colored blue. Time shown is 400 ms before to 220 ms after movement onset. Note that the 

jPC1 axis is projecting into the page. (b) Analogous three-dimensional visualization of the 

regularized model for monkey J (data are presented as in a). In addition, the single, 

condition-independent fixed point of the model, which organizes the dynamics of movement 

generation, is shown with an orange x. Time shown is 1,000 ms before to 220 ms after 

movement onset.
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Figure 7. 
Frequency analysis of neural data and regularized model for monkey J. (a) Eigenvalue 

analysis of the neural data. Shown on the line of stability (Inf, neither decaying nor growing) 

are the purely imaginary eigenvalues associated with the jPCA analysis of the neural data in 

Figure 3a (blue squares). Also shown are the top eigenvalues of an unconstrained linear fit to 

the neural data (blue triangles). (b) The complex eigenvalue spectrum of the linearized 

system around the fixed point in the regularized model for monkey J (red x marks) based on 

a structural analysis of the weight matrix. Highlighted with red numbers are those modes of 

the linearized system that have a slow decay. Shown along the line of stability are the purely 

imaginary eigenvalues associated with the jPCA analysis of the regularized model data 

(green squares). Gray lines show the connection between the jPCA analysis and the 

structural analysis, as given by subspace angle analysis of eigenvectors in c. (c) Subspace 

angle analysis for the model, comparing the jPC planes (b, green squares) with the 

eigenvectors of the linearized system around the fixed point (b, red x marks). On the 

horizontal axis are listed the five slowest decaying oscillatory modes of the linearized 

system (corresponding to the red numbered modes in b). On the vertical axis are listed the 

three oscillatory planes found by jPCA (corresponding to the green numbered modes in b). 

Color indicates the minimum subspace angle (the minimum angle between the 

corresponding planes). For comparison, the minimum subspace angle between two randomly 

chosen planes in a N = 300 D space is 84 ±2 degrees (mean and s.d., black arrow labeled 

chance). Thus, a minimum subspace angle of 30–40 degrees indicates highly overlapping 

subspaces. In the present case, jPC plane 1 overlapped heavily with mode 3 (the highest 

frequency), jPC plane 2 overlapped heavily with oscillatory mode 2 (the second highest 

frequency) and jPC plane 3 overlapped more modestly with oscillatory mode 5 (the third 

highest frequency).
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Figure 8. 
Regularization affects similarity to data and model robustness. (a) Average canonical 

correlation, as training progresses, between the regularized model and the neural data from 

monkey J. To provide a baseline, the black bar shows the mean canonical correlation 

between the untrained model with correct inputs and the neural data (0.50). As training with 

regularization progresses (blue), the model becomes more and more similar to the neural 

data, ending with a mean canonical correlation of 0.67 for this model (blue arrow). When 

trained to generate EMG without any regularization, the model has a mean canonical 

correlation with the data of 0.53 (red arrow). Black shows the canonical correlation of the 

untrained model with the data from monkey J. (b) The normalized error of the network 

output for the regularized model. Error decreased very quickly, even while the mean 

canonical correlation (a) continued to increase over a much longer period of training. The 

final error for the regularized model was comparable to the final training error for the 

complicated model (red). (c) Perturbation test of the initial conditions for the regularized and 

complicated models analyzed in a (blue and red arrows, respectively). The inputs were 

randomly perturbed according to a normalized percentage of the input strength (as given on 
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horizontal axis). The network was then run and the mean normalized EMG error of the 

outputs (vertical axis) was averaged across 50 repetitions of this procedure. Error bars show 

s.d. The vertical axis is truncated at 100% error. (d) A structural perturbation test of the 

recurrent connectivity matrix in equation (1) for the regularized and complicated models 

analyzed in a (blue and red arrows, respectively). The connectivity matrix was randomly 

perturbed 50 times according to a normalized percentage of the mean absolute connection 

strength (as given on horizontal axis). The perturbed network was then run and the mean 

normalized EMG error of the outputs was averaged (vertical axis). Error bars show s.d. The 

vertical axis is truncated at 100% error.
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